INFECTIOUS KERATITIS

Dr. Ali Hammoud Supervised by : Dr. Buraa Kubaisi

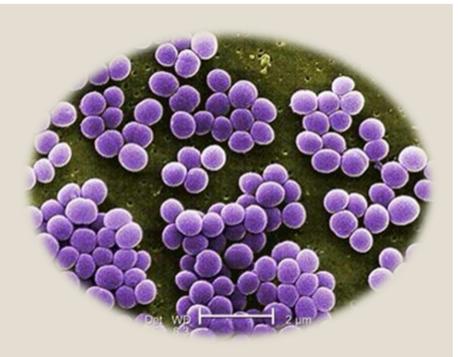
Introduction

- Infectious keratitis is a major global cause of visual impairment and blindness, often affecting marginalized populations.
- Approximately 71,000 cases of microbial keratitis (including bacteria, fungus, and Acanthamoeba) occur annually in the United States, with an increasing incidence in recent years.
- The various microorganisms which can cause infectious keratitis can be classified into eukaryotic and prokaryotic organisms.
- The eukaryotic organisms include the relatively complex cells such as protozoa and the fungi.
- the prokaryotic organisms are more primitive cells, which include the filamentous bacteria, true bacteria, spirochaetes, mycoplasma and rickettsiae and chlamydiae

• The most important cause of infectious keratitis .

 Rarely occurs in the normal eye because of the human cornea's natural resistance to infection.

Risk Factors :

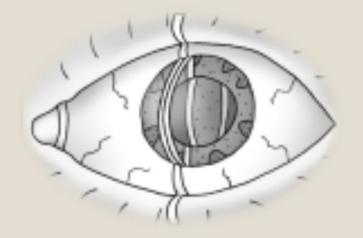

- predisposing factors, including: contact lens wear, trauma, corneal surgery, ocular surface disease, systemic diseases, and immunosuppression
- Some bacteria, including:

(Neisseria gonorrhoeae, Neisseria meningitidis, Corynebacterium diphtheriae and Haemophilus influenzae) are able to penetrate a healthy corneal epithelium

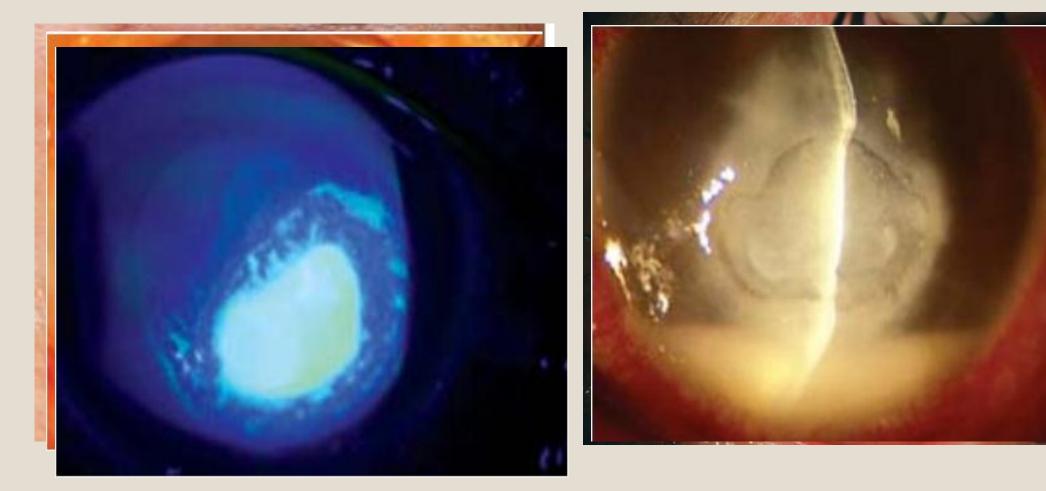
Pathogenesis :

- Remember that infections may be **polymicrobial**
- Common pathogens include :
 - * Pseudomonas aeruginosa
 - *Staphylococcus aureus
 - **Streptococci**: S. pyogenes S. pneumonia (pneumococcus)
 - Enteric gram-negative rods : In particular, Klebsiella, Enterobacter, Citrobacter, Serratia, and Proteus are important causes of keratitis.
- **others** : Mycobacterium , Gonococci , Corynebacterium diphtheriae , Haemophilus influenza

Symptoms :

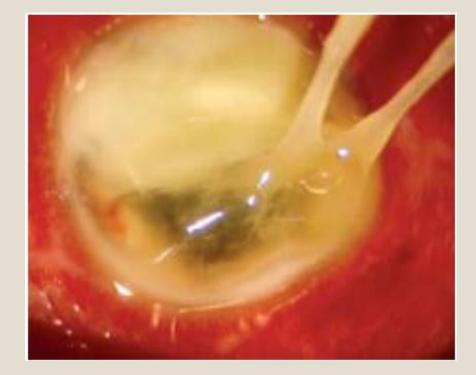

• The classical **symptoms** of corneal ulceration include the presence of :

⇔PAIN


***REDNESS & PHOTOPHOBIA**

* DISCHARGE

***DICREASED VISUAL ACUITY**



Work up:

- History taking and clinical examination are crucial for the diagnosis and management of microbial keratitis.
- A meticulous history helps to identify predisposing incidents, risk factors and can provide clues to etiological diagnosis of microbial keratitis.
- **Clinical examination** *corneal sensation* which must be assessed prior to instillation of topical anesthetic .

Grading of corneal ulcer						
Feature	Mild	Moderate	Severe			
Size of ulcer (mm)	< 2	2-5	> 5			
Depth of ulcer (%) Infiltrate	< 20	20-50	> 50			
— Density	Dense	Dense	Dense			
— Extent	Superficial	Extension upto mid- stroma	Deeper than mid stroma			
Scleral involvement	Not involved	Not involved	May be involved			
Ann Ophthalmol 1975;7(4):537-9						

Diagnostic tests :

Culture and smears :

- The majority of community-acquired cases of bacterial keratitis resolve with empiric therapy and are managed without smears or cultures.
- Smears and/or cultures are specifically indicated in the following circumstances :
 - 1. a corneal infiltrate is **central**, **large**, and/or is associated with **significant stromal involvement or melting**.
 - 2. the infection is chronic or unresponsive to broad-spectrum antibiotic therapy
 - 3. there is a history of **corneal surgeries**.
 - 4. Atypical clinical features are present that are suggestive of fungal, amoebic, or mycobacterial keratitis.
 - 5. infiltrates are in **multiple locations** on the cornea

 Corneal scraping is a powerful diagnostic tool allowing definitive diagnosis of pathologic conditions

Samples for diagnosis of corneal ulcer

Eyelid swab- Not of much use

Conjunctival swab - Not of much use

Corneal scraping- Most important

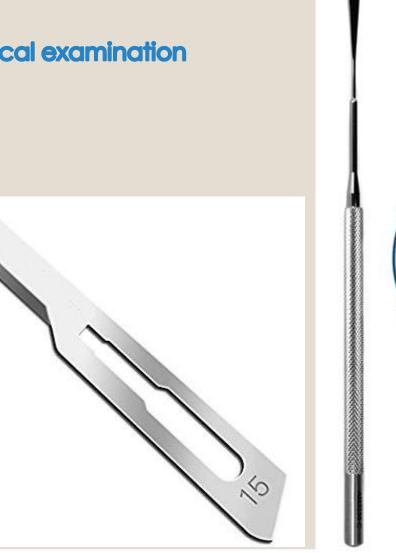
Contact lens, contact lens case and solution- Must in contact lens wear

AC paracentesis (Hypopyon)- Deep ulceration or when insufficient material is present

Corneal scraping The most important sample for microbiological examination

*Anesthesia :

- Topical 0.5% proapracaine in the lower fornix
- 0.5% proparacaine is least bactericidal as compared to other anesthetic agents.
- General anesthesia and sedation may be required in children, uncooperative adults or mentally impaired patients

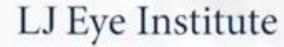


Corneal scraping The most important sample for microbiological examination

Instruments:

- Kimura' s spatula
- surgical blade no 15
- 23-gauge needle.
- calcium alginate swab

Corneal scraping The most important sample for microbiological examination


*Technique :

- A lid speculum is applied gently to separate the lids
- done under a slit lamp or under an operating microscope.
- Any mucous or debris on and around the ulcer is carefully cleaned with a sterile swab stick.
- the leading edges and base of the ulcer are scraped
- it should be directly inoculated into the culture media rather than placing it first into the transport media. (broth culture medium)
- Multiple scrapings must be obtained to enhance the yield of the organism

Table 6.3 Stains for corneal and conjunctival scrapings				
Stain	Organism			
Gram	Bacteria, fungi, microsporidia			
Giemsa	Bacteria, fungi, Acanthamoeba, microsporidia			
Calcofluor white (fluorescent microscope)	Acanthamoeba, fungi, microsporidia			
Acid-fast stain (AFB) e.g. Ziehl–Neelsen, auramine O (fluorescent)	Mycobacterium, Nocardia spp.			
Grocott–Gömöri methenamine-silver	Fungi, Acanthamoeba, microsporidia			
Periodic acid-Schiff (PAS)	Fungi, Acanthamoeba			

	Table 6.2 Culture media for corr	able 6.2 Culture media for corneal scrapings			
	Medium	Notes	Specificity		
	Blood agar	5-10% sheep or horse blood	Most bacteria and fungi except Neisseria, Haemophilus and Moraxella		
	Chocolate agar	Blood agar in which the cells have been lysed by heating. Does not contain chocolate!	Fastidious bacteria, particularly H. influenzae, Neisseria and Moraxella		
\langle	Sabouraud dextrose again	Low pH and antibiotic (e.g. chloramphenicol) to deter bacterial growth	Fungi		
	Non-nutrient agar seeded with Escherichia coli	E. coli is a food source for Acanthamoeba	Acanthamoeba		
	Brain-heart infusion	Rich lightly buffered medium providing a wide range of substrates	Difficult-to-culture organisms; particularly suitable for streptococci and meningococci. Supports yeast and fungal growth		
	Cooked meat broth	Developed during the First World War for the growth of battlefield anaerobes	Anaerobic (e.g. Propionibacterium acnes) as well as fastidious bacteria		
	Löwenstein–Jensen	Contains various nutrients together with bacterial growth inhibitors	Mycobacteria, Nocardia		

CORNEAL SCRAPING

www.ljeyeinstitute.org +91-7206001266, +91-931551655

How to Perform a Corneal Biopsy

A/Professor Graham A Lee

Treatment :

 Ulcers and infiltrates are initially treated as bacterial unless there is a high index of suspicion of another form of infection.

General tips :

Consider hospital admission for severe keratitis – large> 1.5 mm, central involving the visual axis and patients who are not likely to comply or are unable to self-administer.

Discontinuation of contact lens wear

- >Treatment strategies : depend on severity of keratitis
- Empirical broad-spectrum treatment is usually initiated before microscopy results are available.

Fortified Antibiotic eye drops

Monotherapy

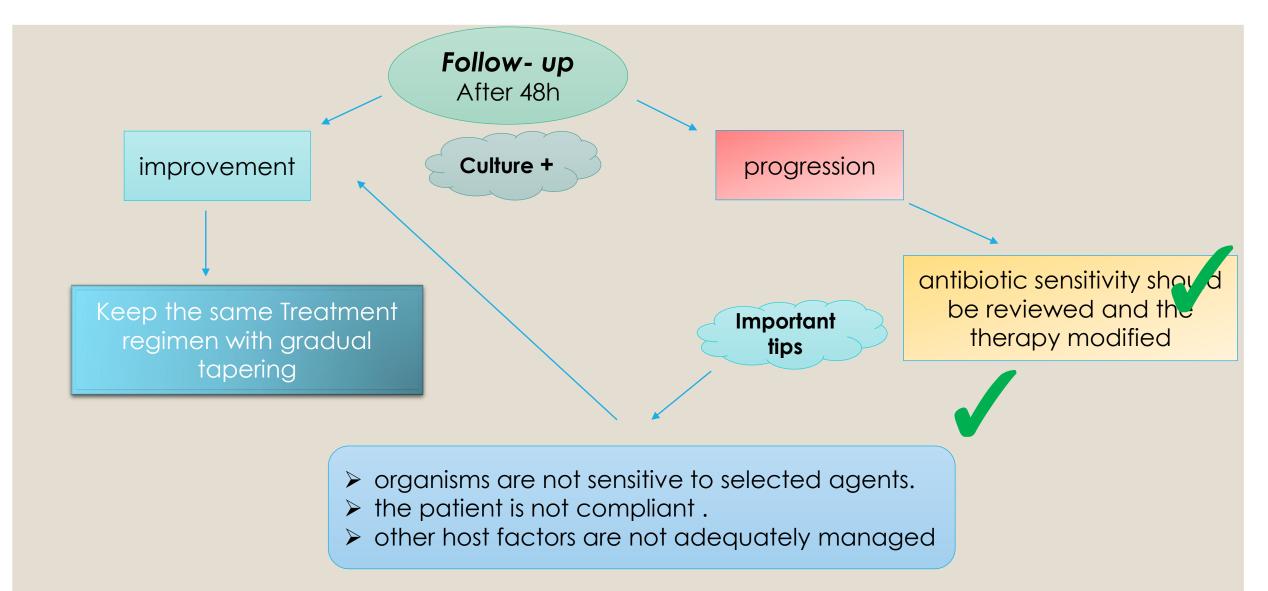
Combination Therapy (+, -) Provides Good Initial Broad-spectrum Antibiotic Coverage.

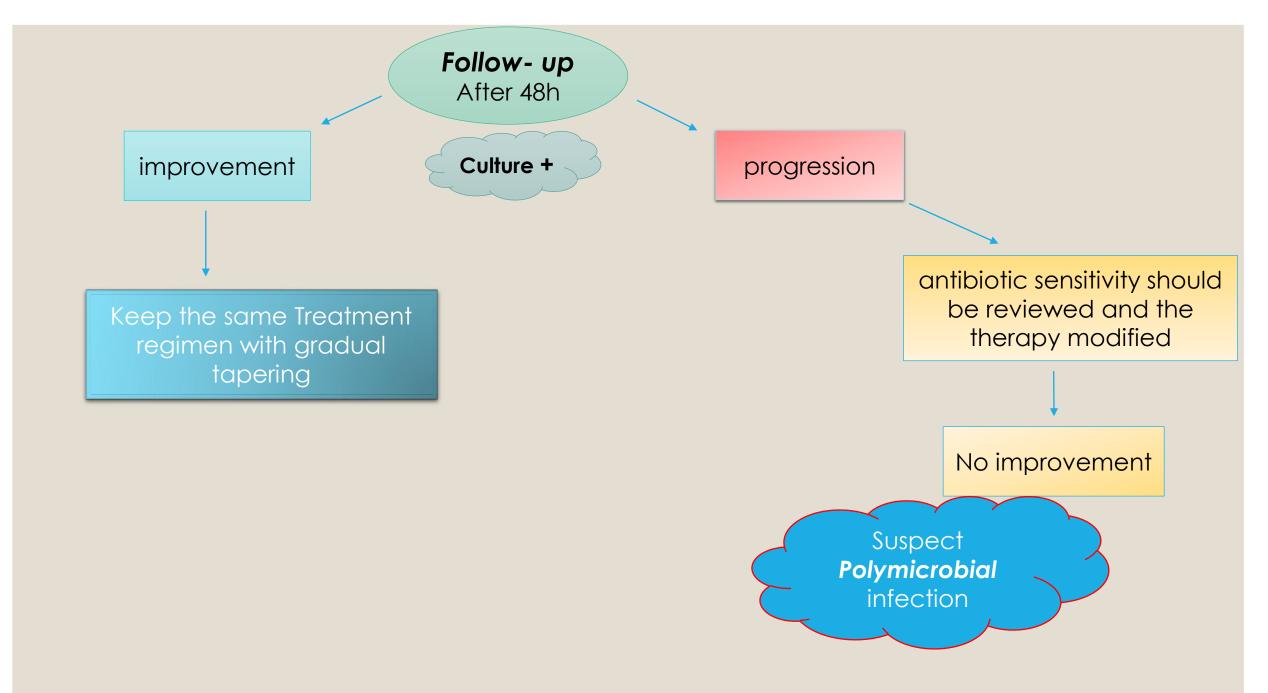
> Disadvantages 😕 :

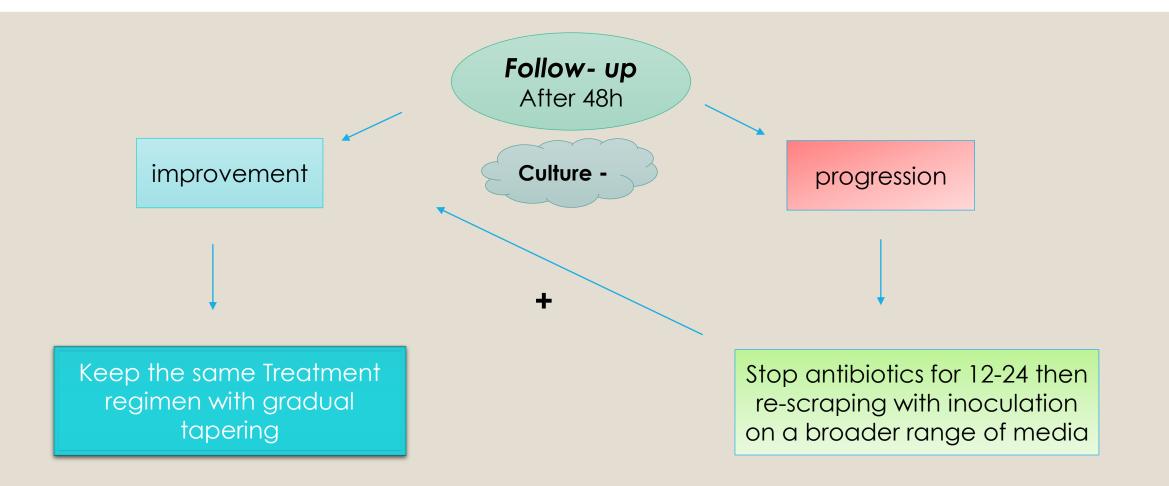
- Ocular Irritation
- ↑ Cost
- The Inconvenience Of Extemporaneously Preparing
- ➤ Their Chief Advantage Is : ☺
 Their Potential To Save Vision In Aggressive Infections .

Frequent \rightarrow every(30- 60 minutes)

- In Severe Cases Every 5 minutes For 30 minutes as a loading Dose
- Oral Abx : scleral impending perforation- endophthalmitis


- > Fluoroquinolones : alternative Tx in :
 - Compliant Patients
 - Less Severe Ulcers (e.g. <3 mm In Diameter)
 - Mid-peripheral or Peripheral
 - Not Associated With Significant Thinning.
- > At least q.h.


Organism	Antibiotic	Topical concentration	Subconjunctival dose
No organism identified or multiple types of	Cefazolin with	50 mg/mL	100 mg in 0.5 mL
organisms	Tobramycin or gentamicin	9–14 mg/mL	20 mg in 0.5 mL
	Fluoroquinolones	3–6 mg/mL	Not available
Gram-positive cocci	Cefazolin	50 mg/mL	100 mg in 0.5 mL
	Vancomy cin [‡]	15–50 mg/mL	25 mg in 0.5 mL
	Moxifloxacin, gatifloxacin, besifloxacin, levofloxacin	5–6 mg/mL	Not available
Gram-negative rods	Tobramycin or gentamicin	9–14 mg/mL	20 mg in 0.5 mL
	Ceftazidime	50 mg/mL	100 mg in 0.5 mL
	Ciprofloxacin, ofloxacin Moxifloxacin, gatifloxacin, besifloxacin, levofloxacin	3-6 mg/mL	Not available
Gram-negative cocci [§]	Ceftriaxone	50 mg/mL	100 mg in 0.5 mL
	Ceftazidime	50 mg/mL	100 mg in 0.5 mL
	Ciprofloxacin, ofloxacin Moxifloxacin, gatifloxacin, besifloxacin, levofloxacin	3-6 mg/mL	Not available
Nontuberculous mycobacteria	Clarithromycin	10 mg/mL (0.03%)	20 mg in 0.5 mL
	Moxifloxacin, gatifloxacin, besifloxacin	3-6 mg/mL	Not available
	Amikacin	20-40 mg/mL	20 mg/0.5 mL
Nocardia	Sulfacetamide	100 mg/mL	
	Amikacin	20-40 mg/mL	20 mg/0.5 mL
	Trimethoprim/sulfamethoxazole	16 mg/mL	
		80 mg/mL	


Follow-up:

- Daily evaluation at first, including repeated measurements of the size of the infiltrate and epithelial defect.
- The most important criteria in evaluating treatment response are the amount of pain, the epithelial defect size, the size and depth of the infiltrate, and the anterior chamber reaction.
- **Reduced pain** is often the first sign of a positive response to treatment

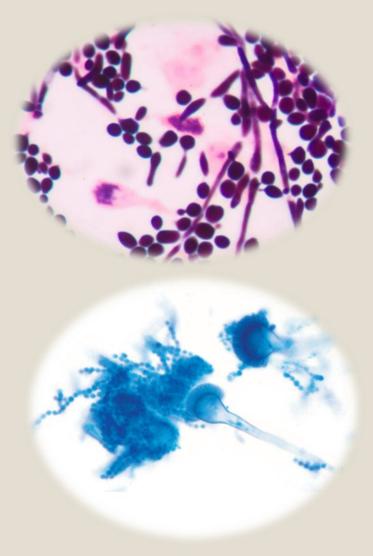
Fungal keratitis :

- One of the most difficult forms of microbial keratitis for the ophthalmologist to diagnose and treat successfully.
- Rare in temperate countries but is a major cause of visual loss in tropical and developing countries.
- A major blinding eye disease in Asia.
- can elicit a severe inflammatory response corneal perforation is common, and the outlook for vision is frequently poor.

Risk factors for the development of fungal keratitis

OCULAR FACTORS

Trauma Chronic corneal inflammation Herpes simplex Herpes zoster Vernal allergic conjunctivitis Ocular surface problems Dry eye Bullous keratopathy Exposure Keratopathy Contact lens wear Drugs Corticosteroids Anesthetics Corneal surgery Penetrating Keratoplasty Refractive surgery

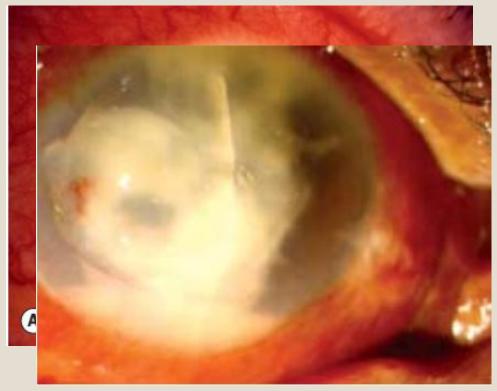

SYSTEMIC FACTORS

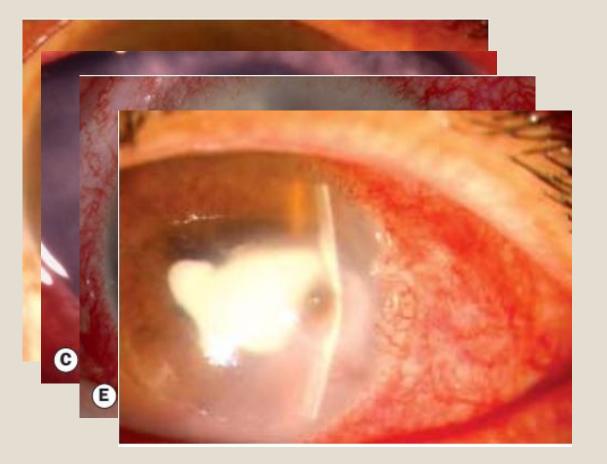
Diabetes mellitus HIV positive patients Leprosy

Pathogenesis :

• Two main types of fungi cause keratitis:

- Yeasts (e.g. genus Candida), ovoid unicellular organisms that reproduce by budding, are responsible for most cases of fungal keratitis in temperate climates.
- Filamentous fungi (e.g. genera Fusarium and Aspergillus), multicellular organisms that produce tubular projections known as hyphae. They are the most common pathogens in tropical climates, but are not uncommon in cooler regions; the keratitis frequently follows an aggressive course




Clinical features :

- **Symptoms** : The onset of fungal keratitis is almost always insidious. Symptoms are usually non-specific, although possibly more prolonged duration (5 to 10 days)
- Patients generally complaint of a foreign body sensation for several days with a slow onset of increasing pain and diminution of vision especially if the keratitis involves the visual axis.

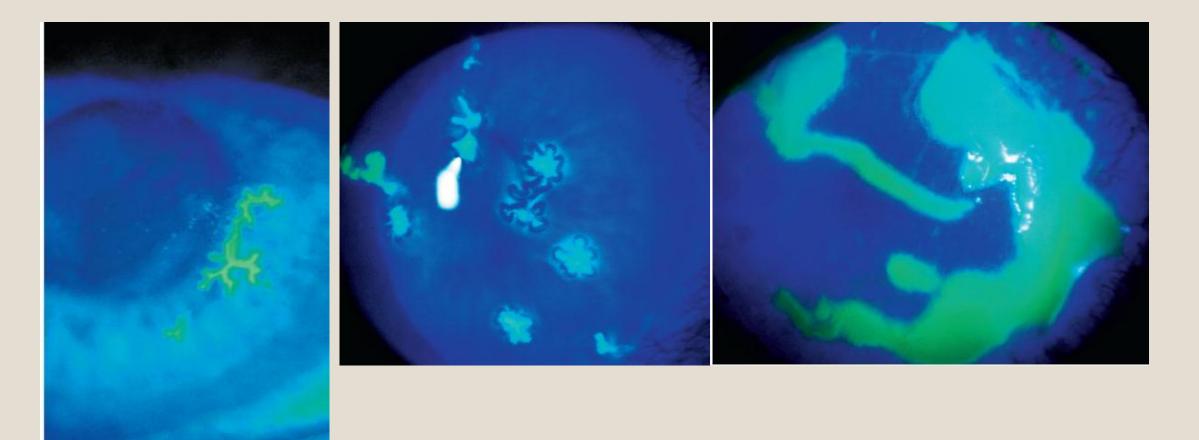
Clinical features :

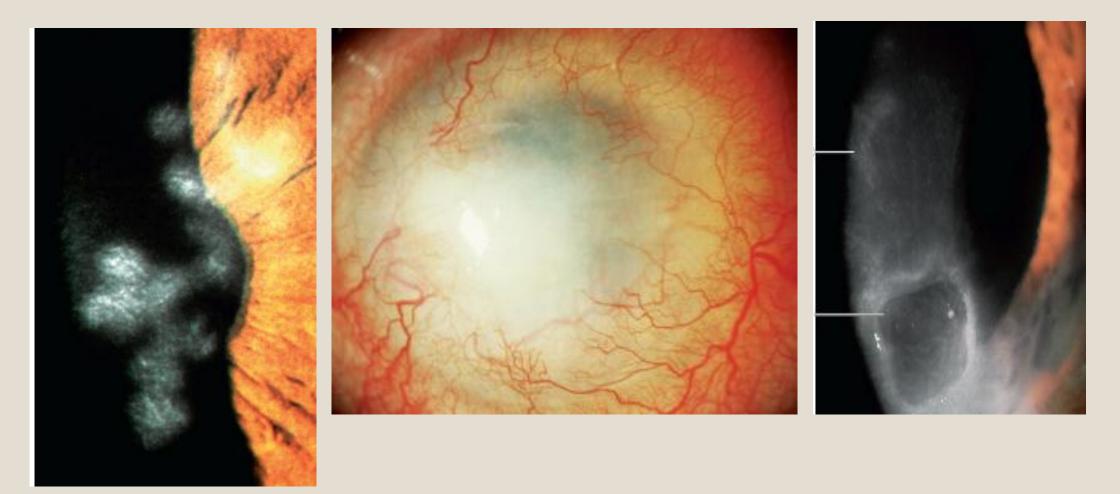
• Signs :

Diagnosis :

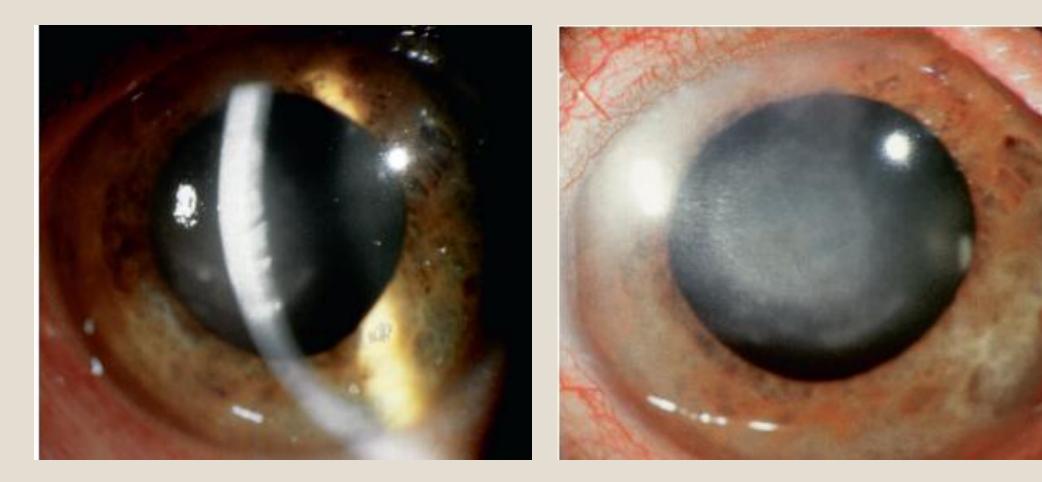
- Staining : KOH highly sensitive
- **Culture** : Sabouraud dextrose agar
- Polymerase chain reaction (PCR) analysis
- Corneal biopsy is indicated in suspected fungal keratitis in the absence of clinical improvement after 3–4 days and if no growth develops from scrapings after a week
- Anterior chamber tap has been advocated in resistant cases with endothelial exudate
- Confocal microscopy frequently permits identification of organisms in vivo

Treatment :

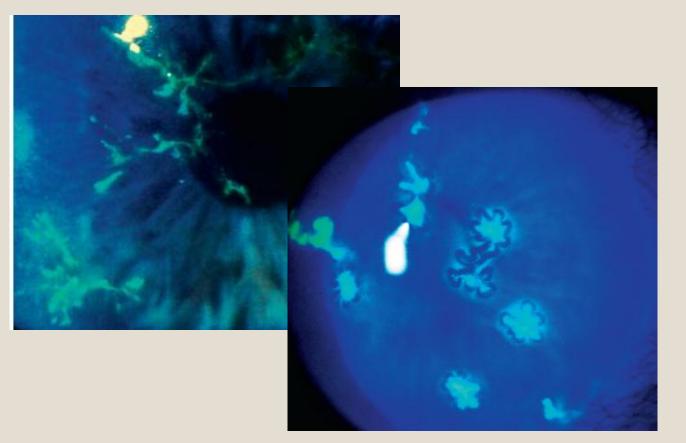

- Hospital admission is required
- Topical Anti fungals : q.h for 48h then tapering according to signs
 - <u>Candida infection</u>: amphotericin B 0.15% or econazole 1% alternatives include : natamycin 5% voriconazole 1 or 2%.
 - *Filamentous infection* : natamycin 5% or econazole 1% alternatives include : amphotericin B 0.15%
- A broad-spectrum antibiotic
- \circ Cycloplegia
- Systemic antifungals : fluconazole 200 mg twice daily
- **Tetracycline** (e.g. doxycycline 100 mg twice daily) may be given for its anticollagenase effect when there is significant thinning .
- Superfcial keratectomy
- Therapeutic keratoplasty


Viral keratitis : нsv

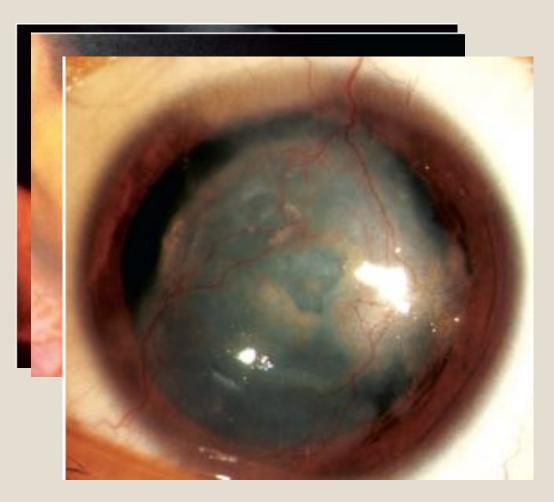
- Viral keratitis is the commonest cause of keratitis in the developed world .
- HSV HZV adenoviruses
- Herpes simplex keratitis is the most common infective cause of blindness in many developed countries
- The ocular disease affecting the cornea may be classified into **primary or recurrent**

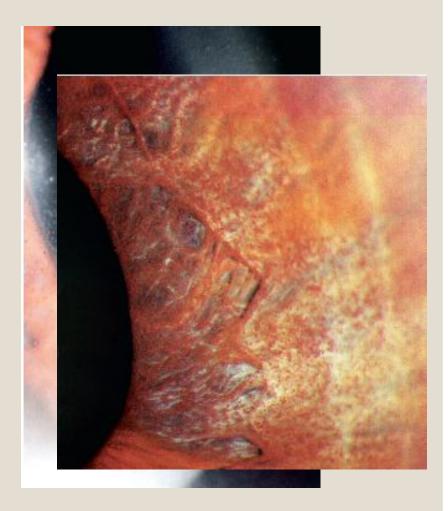

Signs : HSV

Signs : HSV

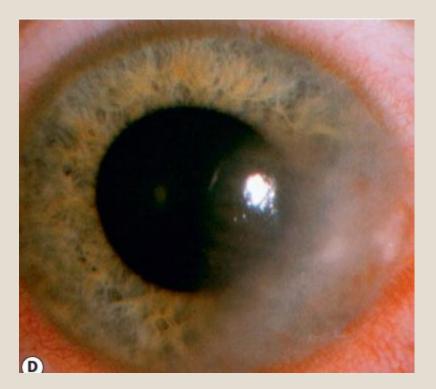


Signs : HSV



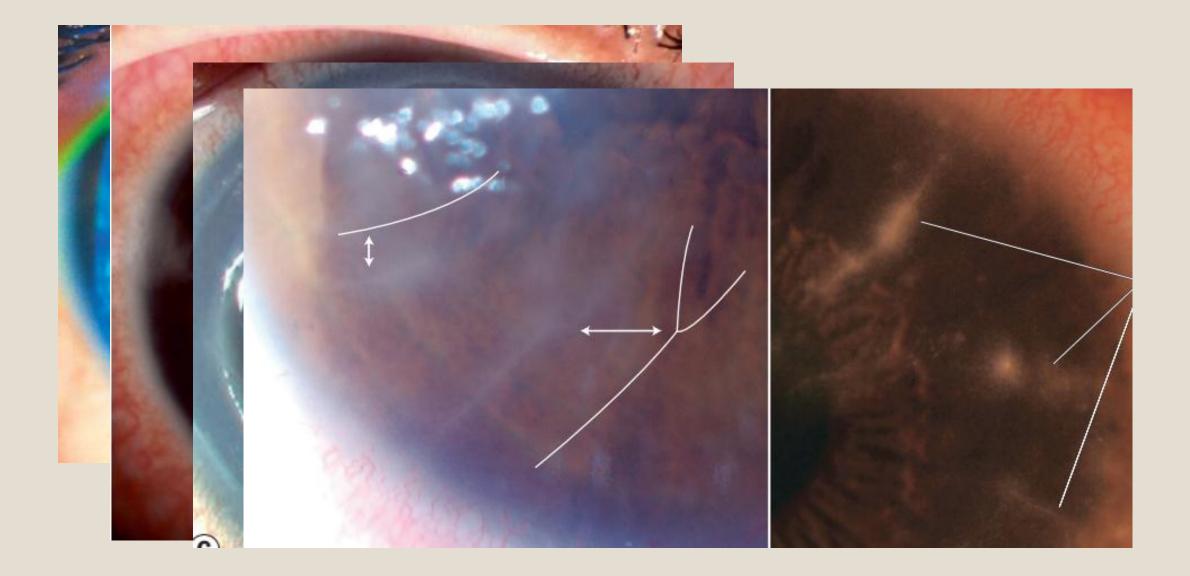

Signs : HZV




Signs : HZV

Signs : HZV

Acanthamoeba keratitis


- Acanthamoeba are ubiquitous free-living protozoa
- Isolated from soil, dust, sea, and fresh and chlorinated water
- Capable of encystment in unfavourable conditions .

• Risk factors

- CL wear: especially with extended-wear CL, poor CL hygiene (e.g. rinsing in tap water), or after swimming with CL in situ (ponds, hot tubs, swimming pools).
- Corneal trauma: notably in a rural or agricultural setting.

• Clinical features

- Variable: ranges from asymptomatic, FB sensation, VA, or tearing **to severe pain** (disproportionate to often relatively mild clinical findings); may occasionally be bilateral.
- Epithelial ridges, pseudo- and true dendrites; stromal infltrates (may progress circumferentially to form a ring); perineural infltrates; corneal sensation.

